groundwater/surface-water interactions

Evan Christianson, PG

Barr Engineering Company

Discussion of....

- Groundwater/Surface-Water Interactions
- Groundwater Recharge
- Impacts from Pumping
 - Potential effect on water appropriations permitting

Groundwater/Surface-Water Interactions

discharge lake/wetland graining stream

Mostly receives groundwater inflow

recharge lake/wetland losing stream

- Mostly loses water as seepage to groundwater
- Rate of loss dependent on:
 - difference between aquifer hydraulic head and water stage
 - lake/stream bed characteristics
 - aquifer characteristics

flow-through lake/wetland

- Groundwater flow both into and out of lake/wetland
- Rate of loss dependent on:
 - difference between aquifer hydraulic head and water stage
- lake/stream bed characteristics
- aquifer characteristics

disconnected lake/wetland/stream shallow water table

Water table slightly below lake/wetland/stream bottom Fluctuations in water table affect flow dynamics

disconnected lake/wetland/stream deep water table

Water table far below lake/wetland/stream bottom
Loss of water to the unsaturated zone
Change in water table has no effect on lake/wetland/stream

non-karst spring

Flow from spring controlled by porous media flow

karst spring

Flow from spring controlled by karst flow and/or low-permeability layers

Vulnerability to Changes in Groundwater System

- Connected or Disconnected (perched)
- Connection type (flow-through, discharge etc.)
- Geology
 - Glacial Sediments
 - Bedrock
 - Soils
- Surface-water characteristics
 - Depth, Geometry, etc.
- Sensitivity of Biota

Groundwater Recharge

Time lag between infiltration and recharge

Impacts of Groundwater Pumping

Groundwater Pumping 7- County Metro Area

- 316 Million Gallons Per Day
 - > 200,000 gpm
- Equivalent to 2.2 inches per year across the metro
 - Approximately 27% of average recharge
- Or 100% recharge in this area

natural conditions

recharge = ground water discharge

well pumping at rate, Q1

- well "captures" water that would have discharged to stream
- groundwater divide forms between stream and well

well pumping at higher rate, Q2

- well "captures" water that would have discharged to stream and pulls water directly from the stream
- groundwater divide forms between stream and well

(Alley et al., 1999)

Any pumping will reduce groundwater flow to lakes and streams

- Conservation of mass

The aquifer that water is withdrawn from only affects:

- 1) the location/areal extent of the reduction
- 2) time lag

MN 103G.272 Subdivision 2

Groundwater appropriations that will have potential impacts negative impacts to surface waters are subject to applicable provisions in section 103G.285

Original language from 2010 modified in 2014

103G.285 = Surface water appropriations; process and limits

What is a negative impact?

MN DNR Thresholds

Report to the Minnesota State Legislature: Definitions and Thresholds for Negative Impacts to Surface Waters, January 2016

Streams

Diversion limit of no more than 10% of the August median base flow

Lakes

- with constant stream outflow = apply stream threshold
- without constant stream outflow = protection elevation
- Goal is to maintain characteristic hydrology, ecology, and riparian uses of the lake most of the time

Wetlands

- Currently proposing establishing target hydrographs for various wetland types
- Currently very limited wetland-related hydrologic data

Effect on permitting process

- 1.) Establish negative impact thresholds for surface water bodies
- 2.) Establish sustainable diversion limits that will maintain protected flows and protection elevations for those water bodies
- 3.) Conduct groundwater modeling to determine the effects of groundwater withdrawals on the surface water bodies
- 4.) Assess to what degree individual groundwater withdrawals may need to be adjusted.

Minnesota Water Priority Classes

- Riparian water law system
- New permit applicants have same priority as existing permit holders, assuming water is for the same purpose
- If a conflict exists, water users have the opportunity to develop a plan for proportionate distribution of limited water available among all users in the same **priority class**.

Minnesota Water Use Priority Classes

- 1.) Municipal water supply and power production with contingency plan
- 2.) < 10,000 gallons per day
- 3.) Agriculture irrigation and agriculture processing
- 4.) Power production in excess of contingency plan
- 5.) Other > 10,000 gal/day
- 6.) nonessential uses

Local Thought Experiment

Drawdown in Jordan Aquifer Near Pumping Well

At Water Table Near Pumping Well

Change in Baseflow for Small Reach Near Well

Kanabec County Burnett Benton County Isanti Stearns County County Chisago Polk County Sherburne County Anoka County Wright County Meeker County Croix County Ramsey Hennepin County County St McLeod 3 County Carver County Dakota Scott County County Sibley County Good hue County Le Sueur County Nicollet County County 10 20 Blue Earth Steele Waseca Miles County County County

Metro Model 3

covers 11-county metro

All Major Aquifers and Aquitards

Metro Model 3

- Pumping from all high capacity wells
- Recharge from SWB model
- Incorporation all detailed bedrock and glacial geology
- Steady-state and transient
- Extensive calibration process

